

Last findings on T2/HT2 on malting barley and behaviour from malting barley to malt

Dr Régis Fournier, IFBM

Fusarium contamination occurs in the field: control has to be setup within the field

➡ Growth can occur during malting process (favourable humidity and temperature)

Better knowledge of Fusariotoxins from field to end products and by-products

Recommendation to reduce mycotoxin level in field and process

The project

4

BARSAFE : Fusarium langsethiae, from barley culture (Hordeum vulgare) to the finished products (beer) and by-products: study of the biology and the epidemiology of the pathogen, the conditions of T2/HT2 toxins production, of their transfer, biological breakdown and toxicity, for a better sanitary risk management

PARTNERS

Institut Français de la Brasserie et de la Malterie (IFBM) Arvalis Institut du Végétal Laboratoire des Sciences du Génie Chimique Laboratoire Génie chimique Laboratoire de Pharmacologie-Toxicologie Laboratoire de Pathologie Végétale et Epidémiologie

Study of *Fusarium* contamination & mycotoxins production in field

- Impact of Fusarium strains viability during storage
- Mycotoxins behaviour during malting & brewing process
- ➡ Mycotoxins behaviour from feed to end products

Study

T2 / HT2 Toxins

iFBM

Analysis method : barley & malt

Multitrichothecene analysis : HPLCMSMS, LOD = 1 ppb)

Isolation and identification of species by culture on agar media

Identification of species by specific primer DNA analysis

Quantification of species by real time PCR DNA analysis

HT2

Barley *Fusarium* species

Fusarium species	F. graminearum	F. tricinctum		
actually found on	F. culmorum	F. avenaceum		
prewing barley	F. langsethiae	F. poae		
		F. sporotrichioides (rare)		
Mycotoxin		F. heterosporum F. acuminatum		
type B TCT (DON, NIV), zearalenone		F. sambucinum		
TCT A, TCT B		F. equiseti		
ТСТА		F. lateritium E. crookwellense (raro)		
Fusaric acid, beauvericine, fusarine C		+ Microdochium nivale		
Moniliformine (F. avena	aceum)			

Enniatines, Beauvericine

Other genera closely studied : Penicillium, Alternaria

Last finding on T2/HT2 on malting barley and behaviour from malting barley to malt , Brussels, February, 1st, 2010

Fusarium Identification

iFBM

Last finding on T2/HT2 on malting barley and behaviour from malting barley to malt , Brussels, February, 1st, 2010

Harvest analysis

From 2003 to 2008, 150 to 200 malting barley samples are analysed every year

- Multitrichothecenes (LC-MS/MS)

- Visual identification

- Identification by PCR

Fusarium : evolution from 2007 à 2009

Fusarium strains solated from calibrated French malting barley

Fusariotoxins: Harvest 2006-2008

Barley		T2+HT2	DON	NIV	
		Harvest 2006			
Spring	mean	73	60	20	
	max	708	508	135	
Winter	mean	5	80	nd	
	max	41	660		
		Harvest 2007			
Spring	mean	59	121	83	
	max	489	957	576	
Winter	mean	2	26	8	
	max	63,5	176	136	
		Harvest 2008			
Spring	mean	35	187	24	
	max	146	1082	202	
Winter	mean	12	122	7	
	max	29	416	69	
		Harvest 2009			
Spring	mean	46	89	18	
	max	687	409	229	
Winter	mean	22	242	4	
	max	306	1226	20	

Toxinogenic Potential of Fusarium Langsethiae

Isolated from malting barley Harvest 2005, 2006, 2007

	T2/HT2	TCT B
Fusarium poae	0-100 ppb	0-700 ppb
Fusarium sporotrichioides	59-668 ppb	None
Fusarium langsethiae	50 000 - 300 000 ppb	None

Harvest 2008

	T2/HT2	ТСТ В
Fusarium sporotrichioides	300 ppm	nd

Conditions: sterilised barley, 2 weeks at 25°C

T2/HT2 producer

iFBM

Fusarium langsethiae

F. langsethiae on PDA

Microconidies of F. langsethiae

Fusarium sporotrichioides

F. sporotrichioideson PDA

Microconidies of *F. sporotrichioides*

iFBM

	MYCOTOXINS								
	Eniatin B	Beauvericin							
Strains	(ppb)	(ppb)	T2triol (ppb)	T2 (ppb)	HT2 (ppb)	3-DON (ppb)	DON (ppb)	NIV (ppb)	GUSHING
E-488 -08-088	0	1200	0	2	26	0	0	80	0
E-488 -0-089	0	450	0	0	0	0	0	480	0
E-488 -08-092	0	980	0	0	0	0	0	80	0
E-488 -07-094	0	1900	0	0	0	0	0	600	0
E-488 -07-008	0	1100	0	2	26	0	0	78	0

Fusarium graminearum

iFBM

	MYCOTOXINS								
	Eniatin B	Moniliformin							
Strains	(ppb)	(ppb)	T2triol (ppb)	T2 (ppb)	HT2 (ppb)	3-DON (ppb)	DON (ppb)	NIV (ppb)	GUSHING
E-488 -07-071	0	0	0	0	0	0	100	0	0
E-488 -07-073	0	0	0	0	0	0	64	0	0
E-488 -07-075	0	0	0	0	0	0	189	0	0
E-488 -07-076	0	0	0	0	0	0	117	0	0
E-488 -07-079	0	0	0	0	0	0	90	55	0

Ecotoxicogenesis conditions : Growth conditions iFBM 80000 **Biomass** (Go) F. langsethiae (2008) 60000 Culture on autoclaved barley 40000 20000 0.997 0 0.981 ¹⁸ 20 22 28 30 Aw 5 0.629 35 **T°C** - Optimal growth temperature : 28°C - Optimal growth Aw 0.992 - No growth at 5 and 35°C Last finding on T2/HT2 on malting barley and behaviour from malting barley to malt , Brussels, February, 1st, 2010

Ecotoxicogenesis conditions : Toxin production

FIELD EXPERIMENTS

Last finding on T2/HT2 on malting barley and behaviour from malting barley to malt , Brussels, February, 1st, 2010

Influence of sowing date

iFBM

YEAR 2007

Influence of sowing date

HARVEST 2008 Spring Barley

same variety, same site, different date (same year)

The later the sowing takes place, the higher the contamination

Sowing date trial

⇒ 3 sowing dates of a Spring Barley (Tipple):

• End of february/ Mid March / beginning of April

⇒ 3 repetitions

MALTING PROCESS

T2+HT2 toxin (µg/kg)

Calibration

Barley	>2.8	2.8-2.5	2.2-2.5	<2.2
HT2	74	136	1103	5000
T2	26	61	379	917
HT2+T2	100	197	1482	5917

Calibration: impact for the malting industry

 $> 1^{st}$ step = Elimination during harvest : smallest grains including those presenting *Fusarium langsethiae* symptoms are not recovered and a great part remains in the field

 $>2^{nd}$ step = Elimination due to calibration : according to *Fusarium langsethiae* symptom described above, the most contaminated fraction for both type A trichothecenes and *Fusarium langsethiae* is the smallest fraction < 2,2. Calibrating over 2,8 allows a maximal elimination of both mycotoxins and fungi.

T2+HT2 toxins are more concentrated in the smallest fraction (dust, small kernels, broken kernels...)

Last finding on T2/HT2 on malting barley and behaviour from malting barley to malt , Brussels, February, 1st, 2010

iFBM

T2+HT2 (µg/kg) follow up in a 2008 sample malted in November 2008

Malting process

Last finding on T2/HT2 on malting barley and behaviour from malting barley to malt , Brussels, February, 1st, 2010

General conclusion

- ⇒ The Fusarium langsethiae and T2/HT2 toxin contaminations are still present in 2009
- → Fusarium sporotrichioides, high T2/HT2 producer, has appeared in 2009 in French Malting Barley
- Harvest calibration, barley calibration prior to malting process and steeping step during malting process allow an consequent elimination of the toxins

General conclusion

⇒ Thanks for your attention

